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RADICAL-NUCLEOPHILIC SUBSTITUTION (SR$) REACTIONS OF a-NITRO-THIOCYANATES 
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Swnmary : cL-Nitro-thiocyanates undergo substitution by a SRNI mechanism with a range of anions 

to give Loss of thiocyanate, corroborating behaviour observed for the intermediate a-nitro- 

thiocyanato radical-anions by e.s.r. spectroscopy. 

a-Substituted nitroalkanes have been reportedly2 to undergo substitution via a radical 

radical-anion chain mechanism (SRNl) with an increasing number of anions. Loss of the 

a-substituent (Scheme 1, route A) has been observed for X = I, Br, Cl, S02R, S(O)R, and SR; 

and loss of nitrite (equation 2B) in an equivalent SRNl mechanism has been observed for 

X = COR, COzR, NOz, CN, Ng, and R. To our knowledge, there are no reports of thiocyanate 

acting as a leaving group in SRNl reactions. 

Scheme 1 R2C(X)N02 + A- - [R~c(X)N~~]' + A' (1) 

[R2C(X)N02]L - R2CN02 + X- (2A) 

[R2C(X)~0211 - R$X + N02- (28) 

R,CN02 + A- - [R2C(A)N02]' (3A) 

[R,C(A)NO,]' + R2C(X)N02 - R2C(A)N02 + [R$(X)NOZ]~ (4A) 

Electron spin resonance (e.s.r.) spectroscopy3 has been used to show that 2-nitro-Z- 

thiocyanatopropane, at low temperature in solid matrices, is able to capture an electron to 

form a stable radical-anion [Me,,$(SCN)N02-] which dissociates to yield Me,CNOz and thiocyanate 

(Equation 2A, X = SCN). One of the purposes of this study is to show that e.s.r. spectroscopy 

can be used to predict the behaviour of radical-anions in solution reactions at room 

temperature e.g. their stability, and the direction of dissociation (Equation 2A versus 2B). 

The radical-anion of nitro-thiocyanatomethane has also been observed4 recently by e.s.r. 

spectroscopy. Electrochemical studies5 have shown that thiocyanato radical-anions can 

dissociate by loss of thiocyanate and/or cyanide. 

2-Nitro-2-thiocyanatopropane and 1-nitro-1-thiocyanatocyclohexane were prepared in good 

yield (40 and 43% resp.) by the oxidative addition of thiocyanate to the anion of 2-nitro- 

propane (Scheme 2). The best yields were obtained when the anion of 2-nitropropane (1 equiv.) 

was added to a CH2Clz/H20 solution of thiocyanate (1 equiv.) and ferricyanide (2 equiv.). 

Scheme 2 R2CN02- + Fe(II1) - R2CN02 + Fe(I1) (5) 

R2CN02 + -SCN - [R2C(SCN)N02]1 (6) 

[R2C(SCN)N0,1L + Fe(II1) - R2C(SCN)N02 + Fe(II) (7) 
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Table 1 : Me$(SCN)NO, + A- ----+ MezC(A)NOz + -SCN 

A- l Reaction Conditionsa % yield of Me2C(A)N02 

MeZCNO; 

PhSO; 

DMSO (2h), DMF (2h) 

DMSO (2h), dark, oxygen atmosphere, 

5 molar % p-dinitrobenzene, 10 molar % (t-Bu)zNO* 

DMSO (2h) 

DMSO (2h); dark, oxygen atmosphere, 

5 molar % E-dinitrobenzene, 10 molar % (t-Bu)zNO* 

HMPA; fluorescent laboratory lights; 90 min, 5h 

72, 51 

42, 38 

34, 34 

49 

40, 37 

40. 35 

8 Wb, 8 (27)b 

(a) The reactions were carried out with 3 molar quantities of 2-nitro-2-thiocyanatopropane 

and the anion under an atmosphere of nitrogen and with irradiation (Tungsten 'white light' 

lamps, 2 x 15OW), unless otherwise stated. (b) Unreacted 2-nitro-2-thiocyanatopropane. 

Attempts to prepare 2-nitro-thiocyanatopropane, under various conditions, by an Sky1 

reaction (Scheme 1, A- = -SCN, X = I, Br) failed, leaving unreacted starting material. Even 

use of catalytic chain initiation 6 (entrainment) with catalytic amounts of the anion of 

2-nitropropane yielded no a-nitro-thiocyanate, but did yield traces of 2,3-dimethyl-2,3- 

dinitrobutane. The latter compound was also a significant impurity in the synthesis using 

ferricyanide, suggesting that the anion of 2-nitropropane successfully competes with thiocyanate 

for addition to the 2-nitropropyl radical. 

Similar lack of reactivity of thiocyanate in S RN1 reactions with haloquinolines has been 

reported7. The lack of reactivity in our system is surprising because the synthesis of 

2-nitro-2-thiocyanatopropane with ferricyanide shows that thiocyanate is able to add to the 

2-nitropropyl radical (Equation 5) - the second step of the SRN~ chain (Equation 3A, A- = -SCN). 

Likewise results from e.s.r. spectroscopy suggest that the dissociation of [Me2C(SCN)N02]1 

is reversible (Equation 8), 

[Me2C(SCN)N02]1 =- Me2CN02 + -SCN (8) 

but that dissociation takes place readily. Similar results for the stability of [Me2C(Br)NOZ]' 

and [Me2C(Cl)N02]- have been suggested from e.s.r. spectroscopy . Bromide and chloride have 

not been reported to act as nucleophiles in SRN~ reactions. We suggest that the equilibrium 

(Equation 8) lies well over on the side of dissociation thus inhibiting the chain reaction. 

The lack of SRN~ reactivity could also be due to poor electron transfer between thiocyanate 

and 2-iodo- or 2-bromo-2-nitropropane. The electron transfer is required for initiation of 

the Spa1 chain reaction (Equation 1, A- = -SCN, X = Br, I). 

It is of interest to note that thiocyanate is an ambident anion but only adds to the 

2-nitropropyl radical via the sulphur atom (Equation 6). We suggest that is phenomena is 

possibly explained by kinetic control* of the addition because the sulphur-anion is more 

nucleophilic towards carbon than the nitrogen-anion. 



Table 2 : Me,C(SCN)NO, + RS- ------+ Me&(SR)N02 

Rs- Reaction Conditionsa 

4-chloropheny. 

phenyl 

DMSO (2h) 

DMSO (2h); dark, oxygen atmosphere, 

40 molar % p-dinitrobenzene, 

40 molar % (t-Bu)zNO. 

DMSO (2h), 10 min., 2h 

DMSO (2h); dark, oxygen atmosphere, 

20 molar % p-dinitrobenzene , 
20 molar % (t-Bu)zNO' 

/ 

I 
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+ RSSR + -SCN + Me2C(N02)C(N02)Me2 

MezC(SR)NOz RSSR 

37 14 

20, 12 16, 4 

17 26 

26 0 

0, D 36, 52 

0, 0 38, 26 

0 38 

0 37 

% yields 

1 

'dimer' 

16 

20, 10 

8 

0 

34, 50 

41, 11 

12 

13 

- 

t 

L 

Me:eC((SCN)NOz 

0 

10, 41 

34 

11 

10, 0 

0, 24 

9 

6 

(a) The react-on conditions were the same as detailed in Table 1 except that irradiation was 

with fluorescent laboratory lights. 

The results of the reaction of 2-nitro-2-thiocyanatopropane with the anion of 2-nitro- 

propane, phenyl sulphinate, and azide (Table 1) show good yields of the corresponding 

a-substituted nitro-compound, with loss of thiocyanate. The inhibition studies296 indicate 

that a radical radical-anion light-catalysed chain mechanism (SRNl) is operative (Scheme 1 with 

X = SCN). The lower yields for azide are due to the steady decomposition of 2-azido-2-nitro- 

propanela with time. 

l-Nitro-1-thiocyanatocyclohexane also reacted (DMSO, 4h, hv) with the anion of Z-nitro- 

propane, with loss of thiocyanate, to yield the corresponding a-substitu :ed product [l-(l- 

methyl-1-nitroethyl)-1-nitrocyclohexane] (61%) by an SRNI mechanism and 2,3-dimethyl-2,3- 

dinitrobutane (16%) by a radical radical-anion non-chain mechanismla,g,lo. 

The reaction of 2-nitro-2-thiocyanatopropane with thiolates yielded the corresponding 

a-nitrosulphides and/or disulphides (Scheme 3). 

Scheme 3 Me2C(SCN)N02 + RS- -----+ Me2C(SR)N02 + -SCN (Sr\Nl) (9) 

- RSSCN + Me2CN02- (SN2) (10) 

RSSCN + RS- r RSSR + -SCN (SN2) (11) 

Me2CN02- + Me2C(SCN)N02 -----+ Me2C(N02)C(N02)MeZ + -SCN (SRN1) (12) 

Me2C(SR)N0, + RS- - RSSR + Me.$NO2- (SN2) (13) 

4-Chlorophenylthiolate yielded largely the a-nitrosulphide. Inhibition studies c early show 

lowered yields of a-nitrosulphide and increased recovery of starting material, indicating a 

SRNl mechanism for the formation of a-nitrosulphide (Equation 9 or Scheme 1, X = -SCN, A- = 

RS-) . The reaction with phenylthiolate yielded only disulphide, the formation of which was 

unaltered by p-dinitrobenzene, di-t-butylnitroxide, and the absence of light, suggesting a _ - 
non-radical mechanism10 (Equations 10 and 11). 

Phenylthiolate is a stronger nucleophile than 4-chlorophenylthiolate and therefore SN2 

attack (Equation 10) by the thiolate on the thiocyanato-substituent to form an intermediate 

sulphenyl-thiocyanate is favoured over the slower electron-transfer required for the SW1 
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mechanism. This competition between SN2 and SRN 1 mechanisms for the reactions of thiolates 

with o-substituted nitro-compounds has been describedlO. Sulphenyl-thiocyanates are well 

known to react rapidly with thiolates to yield disulphides (Equation 11). 

2,3-Dimethyl-2,3-dinitrobutane was formed as a by-product in both reactions by an SRN~ 

mechanism (Equation 12) as shown by the inhibition studies. Di-(4-chlorophenyl) disulphide 

was formed by the abstraction route (Equation 10 and 11) as well as by an equivalent routelo 

from the a-nitrosulphide (Equation 13). 

Reaction of 2-nitro-2-thiocyanatopropane with 4-nitrophenylthiolate yielded largely the 

corresponding a-nitrosulphide as well as some disulphide but benzylthiolate yielded disulphide 

only. 

Reaction of 2-nitro-2-thiocyanatopropane with the anion of diethyl ethylmalonate (DMSO, 

5h, hv) procecdedwithloss of thiocyanate by a redox reaction to give the respective dimers: 

2,3-dimethyl-2,3-dinitrobutane (47%) and tetraethyl hexane-3,3,4,4_tetracarboxylate (20%). 

A radical radical-anion mechanism has been proposed2 for redox reactions of this type. 

Me,C(SCN)N02 +EtC(C@Et), --+ EtC(CO2Et),C(Et)(CO,Et)2 +Me2C(NOz)C(N02)Me2 (14) 

We have shown that thiocyanate can act as a leaving group in SRNl reactions with a range 

of different nucleophiles. The behaviour of a-nitrothiocyanates and their radical-anions in 

solution reactions is in accordance with predictions made from e.s.r. spectroscopy. We 

therefore suggest that e.s.r. spectroscopy provides a good probe for predicting the reactivity 

of radical-anions in SRN~ reactions. 
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