RADICAL-NUCLEOPHILIC SUBSTITUTION (S $_{\rm RN}1$) reactions of $\alpha\mbox{-Nitro-thiocyanates}$

Suleiman I. Al-Khalil and W. Russell Bowman*

Department of Chemistry, University of Technology, Loughborough, Leics. LE11 3TU

<u>Summary</u>: α -Nitro-thiocyanates undergo substitution by a S_{RN} 1 mechanism with a range of anions to give loss of thiocyanate, corroborating behaviour observed for the intermediate α -nitro-thiocyanato radical-anions by e.s.r. spectroscopy.

 α -Substituted nitroalkanes have been reported^{1,2} to undergo substitution via a radical radical-anion chain mechanism (S_{RN}1) with an increasing number of anions. Loss of the α -substituent (Scheme 1, route A) has been observed for X = I, Br, Cl, SO₂R, S(0)R, and SR; and loss of nitrite (equation 2B) in an equivalent S_{RN}1 mechanism has been observed for X = COR, CO₂R, NO₂, CN, N₃, and R. To our knowledge, there are no reports of thiocyanate acting as a leaving group in S_{RN}1 reactions.

Scheme 1

Scheme 2

$$\mathbb{R}_2 C(X) \mathbb{NO}_2 + A \xrightarrow{} \mathbb{R}_2 C(X) \mathbb{NO}_2 \xrightarrow{} + A \xrightarrow{} (1)$$

$$[R_2C(X)NO_2] \xrightarrow{\qquad} R_2\dot{C}NO_2 + X \xrightarrow{\qquad} (2A)$$

$$[R_2C(X)NO_2] \longrightarrow R_2CX + NO_2$$
(2B)

$$R_2 \dot{C} NO_2 + A \xrightarrow{} [R_2 C(A) NO_2] \xrightarrow{} (3A)$$

$$[R_2C(A)NO_2] + R_2C(X)NO_2 \longrightarrow R_2C(A)NO_2 + [R_2C(X)NO_2]$$
(4A)

Electron spin resonance (e.s.r.) spectroscopy³ has been used to show that 2-nitro-2thiocyanatopropane, at low temperature in solid matrices, is able to capture an electron to form a stable radical-anion [Me₂C(SCN)NO₂⁻] which dissociates to yield Me₂CNO₂ and thiocyanate (Equation 2A, X = SCN). One of the purposes of this study is to show that e.s.r. spectroscopy can be used to predict the behaviour of radical-anions in solution reactions at room temperature e.g. their stability, and the direction of dissociation (Equation 2A versus 2B). The radical-anion of nitro-thiocyanatomethane has also been observed⁴ recently by e.s.r. spectroscopy. Electrochemical studies⁵ have shown that thiocyanato radical-anions can dissociate by loss of thiocyanate and/or cyanide.

2-Nitro-2-thiocyanatopropane and 1-nitro-1-thiocyanatocyclohexane were prepared in good yield (40 and 43% resp.) by the oxidative addition of thiocyanate to the anion of 2-nitro-propane (Scheme 2). The best yields were obtained when the anion of 2-nitropropane (1 equiv.) was added to a CH_2CI_2/H_2O solution of thiocyanate (1 equiv.) and ferricyanide (2 equiv.).

$$R_2 CNO_2 + Fe(III) \longrightarrow R_2 CNO_2 + Fe(III)$$
(5)

$$R_2CNO_2 + SCN \longrightarrow [R_2C(SCN)NO_2]$$
(6)

 $[R_2C(SCN)NO_2] + Fe(III) \longrightarrow R_2C(SCN)NO_2 + Fe(II)$ (7)

A	Reaction Conditions ^a	% yield of Me ₂ C(A)NO ₂
Me ₂ CNO ₂	DMSO (2h), DMF (2h)	72, 51
	DMSO (2h), dark, oxygen atmosphere,	42, 38
	5 molar % <u>p</u> -dinitrobenzene, 10 molar % (t-Bu) ₂ NO·	34, 34
PhSO ₂	DMSO (2h)	49
	DMSO (2h); dark, oxygen atmosphere,	40, 37
	5 molar % <u>p</u> -dinitrobenzene, 10 molar % (t-Bu) ₂ NO·	40, 35
N_3	HMPA; fluorescent laboratory lights; 90 min, 5h	8 (39) ^b , 8 (27) ^b

Table 1 : $Me_2C(SCN)NO_2 + A \longrightarrow Me_2C(A)NO_2 + SCN$

(a) The reactions were carried out with 3 molar quantities of 2-nitro-2-thiocyanatopropane and the anion under an atmosphere of nitrogen and with irradiation (Tungsten 'white light' lamps, 2 x 150W), unless otherwise stated.
(b) Unreacted 2-nitro-2-thiocyanatopropane.

Attempts to prepare 2-nitro-thiocyanatopropane, under various conditions, by an S_{RN}^{-1} reaction (Scheme 1, $A^{-} = -SCN$, X = I, Br) failed, leaving unreacted starting material. Even use of catalytic chain initiation⁶ (entrainment) with catalytic amounts of the anion of 2-nitropropane yielded no α -nitro-thiocyanate, but did yield traces of 2,3-dimethyl-2,3-dinitrobutane. The latter compound was also a significant impurity in the synthesis using ferricyanide, suggesting that the anion of 2-nitropropane successfully competes with thiocyanate for addition to the 2-nitropropyl radical.

Similar lack of reactivity of thiocyanate in S_{RN} l reactions with haloquinolines has been reported⁷. The lack of reactivity in our system is surprising because the synthesis of 2-nitro-2-thiocyanatopropane with ferricyanide shows that thiocyanate is able to add to the 2-nitropropyl radical (Equation 5) - the second step of the S_{RN} l chain (Equation 3A, $A^{-} = SCN$). Likewise results from e.s.r. spectroscopy suggest that the dissociation of $[Me_2C(SCN)NO_2]^{-1}$ is reversible (Equation 8),

 $[Me_2C(SCN)NO_2]^2 \longrightarrow Me_2CNO_2 + SCN$ (8) but that dissociation takes place readily. Similar results for the stability of $[Me_2C(Br)NO_2]^2$ and $[Me_2C(C1)NO_2]^2$ have been suggested from e.s.r. spectroscopy. Bromide and chloride have not been reported to act as nucleophiles in S_{RN} 1 reactions. We suggest that the equilibrium (Equation 8) lies well over on the side of dissociation thus inhibiting the chain reaction. The lack of S_{RN} 1 reactivity could also be due to poor electron transfer between thiocyanate and 2-iodo- or 2-bromo-2-nitropropane. The electron transfer is required for initiation of the S_{RN} 1 chain reaction (Equation 1, $A^2 = SCN$, X = Br, I).

It is of interest to note that thiocyanate is an ambident anion but only adds to the 2-nitropropyl radical via the sulphur atom (Equation 6). We suggest that is phenomena is possibly explained by kinetic control⁸ of the addition because the sulphur-anion is more nucleophilic towards carbon than the nitrogen-anion.

2	5	1	a
~	~	ж.	2

RS ⁻	Reaction Conditions ^a	% yields			
		Me ₂ C(SR)NO ₂	RSSR	'dimer'	Me ₂ C(SCN)NO ₂
4-chlorophenyl	DMSO (2h)	37	14	16	0
	DMSO (2h); dark, oxygen atmosphere,	20, 12	16, 4	20, 10	10,41
	40 molar % <u>p</u> -dinitrobenzene,	17	26	8	34
	40 molar % (t-Bu) ₂ NO·	26	0	0	11
phenyl	DMSO (2h), 10 min., 2h	0,0	36, 52	34, 50	10, 0
	DMSO (2h); dark, oxygen atmosphere,	0,0	38, 26	41, 11	0,24
	20 molar % <u>p</u> -dinitrobenzene,	0	38	12	9
	20 molar % (t-Bu) ₂ NO·	0	37	13	6

Table 2 : $Me_2C(SCN)NO_2 + RS^{-} \longrightarrow Me_2C(SR)NO_2 + RSSR + SCN + Me_2C(NO_2)C(NO_2)Me_2$

(a) The reaction conditions were the same as detailed in Table 1 except that irradiation was with fluorescent laboratory lights.

The results of the reaction of 2-nitro-2-thiocyanatopropane with the anion of 2-nitropropane, phenyl sulphinate, and azide (Table 1) show good yields of the corresponding α -substituted nitro-compound, with loss of thiocyanate. The inhibition studies^{2,6} indicate that a radical radical-anion light-catalysed chain mechanism (S_{RN}1) is operative (Scheme 1 with X = SCN). The lower yields for azide are due to the steady decomposition of 2-azido-2-nitropropane^{1a} with time.

l-Nitro-l-thiocyanatocyclohexane also reacted (DMSO, 4h, hv) with the anion of 2-nitropropane, with loss of thiocyanate, to yield the corresponding α -substituted product [1-(1methyl-l-nitroethyl)-l-nitrocyclohexane] (61%) by an S_{RN}l mechanism and 2,3-dimethyl-2,3dinitrobutane (16%) by a radical radical-anion non-chain mechanism^{1a,9,10}.

The reaction of 2-nitro-2-thiocyanatopropane with thiolates yielded the corresponding α -nitrosulphides and/or disulphides (Scheme 3).

Scheme 3	Me ₂ C(SCN)NO ₂ + RS		$Me_2C(SR)NO_2 + SCN$	(S _{RN} 1)	(9)
		-	$RSSCN + Me_2CNO_2^{-}$	(S _N 2)	(10)
	RSSCN + RS		RSSR + SCN	(S _N 2)	(11)
	Me_2CNO_2 + $Me_2C(SCN)NO_2$		$Me_2C(NO_2)C(NO_2)Me_2 + SCN$	(S _{RN} 1)	(12)
	$Me_2C(SR)NO_2 + RS$	-	$RSSR + Me_2CNO_2$	(S _N 2)	(13)

4-Chlorophenylthiolate yielded largely the α -nitrosulphide. Inhibition studies clearly show lowered yields of α -nitrosulphide and increased recovery of starting material, indicating a S_{RN}l mechanism for the formation of α -nitrosulphide (Equation 9 or Scheme 1, X = SCN, A⁻ = RS⁻). The reaction with phenylthiolate yielded only disulphide, the formation of which was unaltered by <u>p</u>-dinitrobenzene, di-<u>t</u>-butylnitroxide, and the absence of light, suggesting a non-radical mechanism¹⁰ (Equations 10 and 11).

Phenylthiolate is a stronger nucleophile than 4-chlorophenylthiolate and therefore S_N^2 attack (Equation 10) by the thiolate on the thiocyanato-substituent to form an intermediate sulphenyl-thiocyanate is favoured over the slower electron-transfer required for the S_{PN}^1

mechanism. This competition between S_N^2 and $S_{RN}I$ mechanisms for the reactions of thiolates with α -substituted nitro-compounds has been described¹⁰. Sulphenyl-thiocyanates are well known to react rapidly with thiolates to yield disulphides (Equation 11).

2,3-Dimethyl-2,3-dinitrobutane was formed as a by-product in both reactions by an S_{RN} l mechanism (Equation 12) as shown by the inhibition studies. Di-(4-chlorophenyl) disulphide was formed by the abstraction route (Equation 10 and 11) as well as by an equivalent route¹⁰ from the α -nitrosulphide (Equation 13).

Reaction of 2-nitro-2-thiocyanatopropane with 4-nitrophenylthiolate yielded largely the corresponding α -nitrosulphide as well as some disulphide but benzylthiolate yielded disulphide only.

Reaction of 2-nitro-2-thiocyanatopropane with the anion of diethyl ethylmalonate (DMSO, 5h, hv) proceeded with loss of thiocyanate by a redox reaction to give the respective dimers: 2,3-dimethyl-2,3-dimitrobutane (47%) and tetraethyl hexane-3,3,4,4-tetracarboxylate (20%). A radical radical-anion mechanism has been proposed² for redox reactions of this type.

 $Me_2C(SCN)NO_2 + Et\bar{C}(CO_2Et)_2 \longrightarrow EtC(CO_2Et)_2C(Et)(CO_2Et)_2 + Me_2C(NO_2)C(NO_2)Me_2$ (14)

We have shown that thiocyanate can act as a leaving group in S_{RN} reactions with a range of different nucleophiles. The behaviour of α -nitrothiocyanates and their radical-anions in solution reactions is in accordance with predictions made from e.s.r. spectroscopy. We therefore suggest that e.s.r. spectroscopy provides a good probe for predicting the reactivity of radical-anions in S_{RN} reactions.

References

- Recent references include : (a) S.I. Al-Khalil and W.R. Bowman, <u>Tetrahedron Lett.</u>, 1982, 23, 4513; (b) G.A. Russell and B. Mudryk, J. Org. Chem., 1982, 47, 1879.
- N. Kornblum, in 'The Chemistry of Amino, Nitroso, and Nitro-compounds and their Derivatives', ed. S. Patai, Wiley, 1982, Suppl. F, p.361.
- 3. W.R. Bowman and M.C.R. Symons, J. Chem. Soc., Perkin Trans. 2, 1983, 25.
- 4. B.C. Gilbert and R.O.C. Norman, Can. J. Chem., 1982, 60, 1379.
- 5. O. Hammerich and V.C. Parker, in 'The Chemistry of Cyanates and their Thio Derivatives', ed. S. Patai, Wiley, 1982, p.332.
- 6. M. Channon and M.L. Tobe, Angew. Chem. Int. Ed. Engl., 1982, 21, 1.
- 7. J.M. Saveant, Acc. Chem. Res., 1980, 13, 323.
- 8. L.M. Tolbert and S. Siddiqui, Tetrahedron, 1982, 38, 1079.
- 9. G.A. Russell, R.K. Norris and E.J. Panek, J. Am. Chem. Soc., 1971, 93, 5839.
- W.R. Bowman and G.D. Richardson, <u>J. Chem. Soc., Perkin Trans. 1</u>, 1980, 1407; Tetrahedron Lett., 1981, 22, 1551.

(Received in UK 30 March 1983)